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Abstract 

In De Boer (2006) the additive decomposition of the aggregate change in a variable into 

its factors was considered. I proposed to use the “ideal” Montgomery decomposition, 

developed in index number theory, rather than the commonly used methods in structural 

decomposition analysis and applied it to the example analyzed by Dietzenbacher and Los 

(1998) (D&L). In this paper I consider the multiplicative decomposition and argue that 

from a theoretical point of view the “ideal” Sato-Vartia decomposition is to be preferred 

to the geometric average of the polar decompositions and that from a computational point 

of view it is to be preferred to the geometric average of all elementary decompositions. 

Application to the example of D&L reveals that the three methods yield results that are 

very close to each other. 
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1. Introduction  

 In a previous paper, De Boer (2006), I considered the additive decomposition of the 

aggregate change in a variable V , )0(V)1(V − , the comparison period being denoted by 1 

and the base period by 0.  

 In the framework of structural decomposition analysis (SDA), Dietzenbacher and Los 

(1998),(D&L), proved, that in case of n factors the number of possible elementary 

additive decompositions, which from a theoretical point of view are equivalent, is equal 

to n! There are (n!)/2 “mirror pairs” (base and comparison period reversed, see De Haan, 

2001), among which the pair of the polar decompositions. Each of the decompositions is 

complete, in the sense that there is no residual term, and is zero value robust, i.e. zero 

values can be dealt with. But none of them satisfies the requirement of time reversal 

which states that if we reverse base period and comparison period the decomposition 

should yield the reverse result, i.e. )]0(V)1(V[)1(V)0(V −−=− . Arithmetic averages of 

the mirror pairs can be shown to satisfy time reversal. In their empirical application D&L 

decomposed the additive change in sectoral labor costs (V) into the effects of changes in 

labor costs per unit, technical changes, and changes in final demand mix and in final 

demand levels. In their example there are 4!=24 elementary decompositions. They 

considered the arithmetic average of the two polar decompositions and the arithmetic 

average of all 24 decompositions and found out that both averages were quite close to 

each other. The disadvantage of the arithmetic average of the two polar decompositions is 

that it does not obey the requirement of factor reversal: if we reverse two factors we do 

not get the same result. This means that the order of appearance of the factors in the 
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decomposition matters. The arithmetic average of all elementary decompositions meets 

the requirement of factor reversal, but the computation of n! decompositions are needed.  

 In index number theory a decomposition that obeys factor reversal is called “ideal”. In 

the previous paper I proposed to use alternatively the “ideal” Montgomery 

decomposition. For the example of D&L I showed that the results of the Montgomery 

decomposition were very close to those either obtained by means of the arithmetic 

average of the two polar decompositions or by the arithmetic average of all elementary 

decompositions. 

  In this paper I consider the multiplicative decomposition of the aggregate change in a 

variable V , i.e. )0(V/)1(V]0,1[DV = , in the framework of the D&L example. In section 

2 I link for the case of n=2 factors (price and quantity) SDA to index number theory. We 

have 2!=2 elementary decompositions: the “polar ones”, none of them satisfying the 

requirement of time reversal which, in the multiplicative case, states that if we reverse 

base period and comparison period the decomposition should yield the reciprocal result; 

i.e. 1]1,0[DV]0,1[DV =× . The commonly used solution is to take the geometric average 

of the two polar decompositions which satisfies time reversal. We show that the 

geometric average of the two polar decompositions, in case n=2 the only elementary 

decompositions, is nothing but the product of the price and quantity index of Fisher. If we 

reverse the two factors we obtain the same result: the Fisher index is ideal. But there are 

also other indices that are ideal. For the problem at hand the Sato-Vartia index is 

particularly suited and I present it in section 2 as well. Section 3 is devoted to the case of 

more than two factors. I take as example the multiplicative decomposition of the example 

of D&L and I give the formula for the elementary decompositions and of the Sato-Vartia 
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decomposition. Section 4 contains the results of the Sato-Vartia decomposition and of the 

geometric average of the two polar decompositions and the geometric average of all 

decompositions. It turns out that they are remarkably close to each other. Section 5, 

finally, contains our conclusions. 

2. Structural decomposition analysis and ideal indices in case of two factors 

2.1. Notation 

 Let )1(pi  and )0(pi denote the prices of commodity i (= 1,…,n) in comparisonand base 

period, and let )1(qi  and )0(qi be the corresponding quantities. Then,  

)1(q)1(p)1(v iii =  and  )0(q)0(p)0(v iii =                                                                         (1) 

are the expenditure on commodity i (= 1,…,n) in comparison and base period, whereas 
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are the shares of commodity i (=1,…,n) in comparison and base period. 

 Finally, we define the ratio of total expenditure in comparison and in base period: 
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2.2. Structural decomposition analysis and the “ideal” indices of Fisher 

 In the terminology of structural decomposition analysis we have to decompose (4) into  

its factors “price” and “quantity”. One possible solution, the so-called first polar 

decomposition, is: 
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 It is easily seen that if we reverse base and comparison period (0 to 1 and 1 to 0) that  

for the first polar decomposition (5) generally 1]1,0[DV]0,1[DV ≠× holds true. In the 

terminology of index number theory, the first polar decomposition does not meet the 

requirement of time reversal:  

1]1,0[DV]0,1[DV =×                                                                                                       (6) 

 However, this is not the only possibility. By reversing the time periods in the weights (0 

to 1, and 1 to 0) we obtain the second polar decomposition: 
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  As is easily seen, the second polar decomposition, (7), does not meet the requirement of 

time reversal (6), either. The solution that is commonly adopted in structural 

decomposition analysis is to take the geometric mean of the two polar decompositions: 
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which can easily be shown to meet the requirement of time reversal. 

 In order to link the structural decomposition approach to the index number approach we 

rewrite (8) to: 
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 In index number theory (omitting the, commonly used, factor 100) the first term is the 

definition of the Fisher price index ( FP ), defined as the geometric mean of the price 

indices of Paasche ( PP ) and of Laspeyres ( LP ): 
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 The second term of (8) is the Fisher quantity index ( FQ ) defined as the geometric mean 

of the quantity indices of Paasche( PQ ) and Laspeyres ( LQ ): 
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 Consequently, the geometric mean of the two polar decompositions yields: 

FF QP]0,1[DV ×=                                                                                                          (10) 

 It can easily seen that if in the formula of the Fisher price index, i.e. the first term of (9), 

we reverse the factors (p to q and q to p) that we obtain the formula given in the second 

term, the Fisher quantity index. Indices that exhibit this property of factor reversal are 

called “ideal”. 
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2.3. Another ideal index: Sato-Vartia1  

 Sato (1976) and, independently, Vartia (1974,1976) have discovered another pair of 

ideal price and quantity indices. In the derivation use will be made of the logarithmic 

mean2 that for two positive numbers a and b is defined as: 

)b/aln(
ba)b,a(L −

=  and a)a,a(L =                                                                                  (11) 

 Balk (2003) supplies a simple derivation from the identity: 

[ ]∑
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that easily follows from the adding-up of shares to 1 (see (3)). 

 Consider the logarithmic mean of )1(si  and )0(si : 
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  Using (3) and (4), expression (14) can be rewritten to: 
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 where we changed the index of summation in the denominator from i to j. 
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  Using definition (1) we obtain: 
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  Taking the exponent, it follows from (15) that the Sato-Vartia decomposition reads: 
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  The first term in (16) is the definition of the price index of Sato-Vartia ( SVP ) and the 

second one the quantity index of Sato-Vartia ( SVQ ), so that (16) can, alternatively, be 

written as: 

SVSV QP]0,1[DV ×=                                                                                                       (17) 

 As is seen from (13), the logarithmic mean is symmetric in )1(si and )0(si , i.e. 

)]1(s),0(s[L)]0(s),1(s[L iiii = . Consequently, it easily follows from (16) that the Sato-

Vartia decomposition satisfies time reversal. Because the exponents are the same, it is 

easily seen as well, that (16) satisfies factor reversal, so that the index numbers are ideal. 

Finally, Ang et al. (1998) proved that in an empirical application zeros can be replaced 

by epsilon small positive numbers. Consequently, the Sato-Vartia decomposition satisfies 

the requirement of zero-robustness as well.  

3. The case of many factors: the example of Dietzenbacher and Los (D&L)   

3.1. The D&L model 

 In their application D&L used the input-output tables at basic prices for the Netherlands 

of 1986 and 1992. Defining the following vectors and matrices: 

w: the 214x1 vector of sectoral labor costs;  
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u: the 214x1 vector of sectoral labor costs per unit of this sector‘s output (in money 

terms);  

û : the 214x214 diagonal matrix with u on the main diagonal;  

q: the 214x1 vector of sectoral outputs;  

A: the 214x214 matrix of technical coefficients ija , measuring the input from sector i 

in sector j, per unit of sector j’s output; 

B: the 214x5 matrix of bridge coefficients jkb , measuring the fraction of the final 

demand in category k that is spent on products from sector i, describing the final 

demand mix; 

f: the 5x1 vector with total final demands3 in each of the five categories, i.e. private 

consumption, government consumption, exports, investments, and other items 

(imputed bank services, VAT, trade and transport margins),  

they consider the model: 

 

qûw =  

BfAqq +=  

of which the solution is: 

LBfûw =                                                                                                                      (18) 

where: 1)AI(L −−=  is the Leontief inverse. 

 In sum notation (18) reads: 

∑∑
= =
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n
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1k
kjkijii fbluw           n,...,1i =                                                                              (19) 
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            where iw , iu and kf are the typical elements of the vectors  w, u and f , respectively; and 

ijl and jkb the typical elements of the matrices L and B, respectively, whereas n=214 and 

m=5. 

2.2. Elementary decompositions 

 The change in labor cost of sector i is defined to be (see (19)): 
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i

i
i = is the change in the labor cost per unit . 

 We want to decompose the second term at the right hand side of (20) into technical 

changes,
)0(l
)1(l

ij

ij ; changes in the final demand mix, 
)0(b
)1(b

jk

jk , and changes in the final 

demand levels, 
)0(f
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k

k .  

 A possible solution is the first polar decomposition. In order to alleviate the notation, we 

define: 

(i) the effects in technical changes: 
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(ii) the effects of changes in the final demand mix: 
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(iii) the effects of the changes in the final demand levels: 
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  Then, we have the multiplicative decomposition: 

1i1i1iii DFDBDLDUDW ×××=                                                                                     (21) 

 However, this is only one of the 3! = 6 elementary decompositions that are distinguished 

by Dietzenbacher and Los (1998).  

 By inverting the time periods in the weights (0 to 1 and 1 to 0) we obtain the second 

polar decomposition that we denote by the subscript 6 (we give in the appendix the four 

other elementary decompositions that, in our software, are denoted by the subscripts 

2,…,5):  
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 Then, we have the multiplicative decomposition: 

6i6i6iii DFDBDLDUDW ×××=                                                                                    (22) 

 Neither (21), nor (22) satisfies the requirement of time reversal. As before the geometric 

mean: 

2/1
6i1i

2/1
6i1i

2/1
6i1iii )DFDF()DBDB()DLDL(DUDW ××××××=                                 (23) 

satisfies time reversal, but it does not any longer satisfy factor reversal! The geometric 

mean of the two polar decompositions is not any longer “ideal” when the number of 

factors is larger than 2. This means that the order of appearance of the factors matters: if 

we would take for instance ijkjk lfb we will get another result for the geometric mean (23).  

 From the 6 elementary decompositions we can derive many combinations that satisfy 

time reversal, but only of them is “ideal”: the geometric mean of all 6 elementary 

decompositions: 
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but it requires the computation of six decompositions. 

3.4. Application of the Sato-Vartia decomposition to the D&L model 

 We define the shares: 
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 Then, the Sato-Vartia decomposition of the ratio of sectoral labor cost of sector i reads: 

iSViSViSVii DFDBDLDUDW ×××=                                                                               (25) 

 This decomposition obviously satisfies time reversal, but also factor reversal, i.e. the 

Sato-Vartia decomposition is “ideal”. It is clear that generalization of this decomposition 

to the case of more than three factors is straightforward. 

To summarize this section, I prefer the use of the “ideal” Sato-Vartia approach that only 

requires one decomposition for any number of factors, rather than the use of the 

geometric mean of the two polar decompositions which is not ideal so that the order of 

appearance of the factors matters, or the use of the geometric mean of all decompositions 

that is “ideal”, but requires the computation of an ever increasing number of 

decompositions when the number of factors increases.  
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4. Results 

 In table 1 I give the results for nine sectors: four with a large percentage growth and five 

with large absolute growth (the results of the other sectors show the same pattern). 

Insert Table 1 about here 

In the heading for each sector I give (omitting the index i): 

)86(w               : sectoral labor costs in 1986; 

)92(w               : sectoral labor costs in 1992; 

)86(w
)92(wDW =   : ratio of labor costs in 1992 and1986; 

)86(u
)92(uDU =     : ratio of labor costs per unit of output (in money terms) in 1992 and1986, 

which are the same for all decompositions. 

 In the second column I give the geometric average of all decompositions; in column 

three the standard deviation are presented from which it can be inferred that the 

elementary decompositions did not vary much. Therefore, the geometric mean of the two 

polar decompositions, given in column four is very close to the geometric average of all 

decompositions. Column five, finally, contains the results for the Sato-Vartia 

decomposition which are very close to the results obtained in columns two and four. 

 I conclude that from an empirical point of view the three methods yield (almost) the 

same results. 
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5. Concluding remarks 

 In this paper I have tried to argue that from a theoretical point of view the use of the 

“ideal” Sato-Vartia approach that only requires one decomposition for any number of 

factors, is to be preferred to the use of the geometric mean of the two polar 

decompositions which is not ideal so that the order of appearance of the factors matters, 

and to the use of the geometric mean of all decompositions that is “ideal”, but requires 

the computation of an ever increasing number of decompositions when the number of 

factors increases. In the example at hand it turned out that from an empirical point of 

view the three methods yielded almost the same results. 

                                                 
1 Siegel(1945) derives another ideal index. Both Balk (2003) and Ang et al. (2004) argue that its 
formula is relatively complex, see the appendix of Ang et al. in which they give the formula for 
n=4. The Montgomery-Vartia index, the multiplicative variant of the Montgomery index that De 
Boer (2006) used for the additive decomposition does not meet the requirement that it is not 
linear homogeneous in prices (quantities), see Balk (2003). 
2 The properties (Balk, 2003) are: )b,amax()b,a(L)b,amin( ≤≤ ; )b,a(L is continuous;                                            

)b,a(L)b,a(L λ=λλ ; )a,b(L)b,a(L = ; and 
2

ba)b,a(Lab +
≤≤ . We give his footnote 1: 

“The logarithmic mean was introduced in the economics literature by Törnqvist in 1935 in an 
unpublished memo of the Bank of Finland; see Törnqvist et al. (1985) …..A proof of the fact that 

2/)ba()b,a(L)ab( 2/1 +≤≤  was provided by Lorenzen (1990)”.  
3 In De Boer (2006) it is argued that a change in stocks is not an appropriate final demand 
category and he split a stock change over all other items of the row according to the pertinent 
shares in total output. 
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Table 1. Results 

Sector Geometric 

mean of all 

decompositions 

standard 

deviation of all 

decompositions 

geometric 

mean of polar 

decompositions 

Sato-Vartia 

decomposition 

Sectors with largest percentage growth 

156 economic 

advising agents 

539)86(w =         1436)92(w =  664.2DW =  015.1DU =  

DL  1.640 0.0817 1.640 1.641 

DB 1.265 0.0640 1.264 1.263 

DF  1.266 0.0017 1.266 1.266 

153 computer 

services 

1245)86(w =       2842)92(w =  283.2DW =  096.1DU =  

DL  1.416 0.0380 1.417 1.416 

DB 1.151 0.0310 1.150 1.151 

DF  1.278 0.0014 1.279 1.279 

127 beverage 

serving 

services (no 

lodging) 

189)86(w =         416)92(w =  201.2DW =  085.1DU =  

DL  1.084 0.0140 1.084 1.082 

DB 1.433 0.0179 1.433 1.436 

DF  1.306 0.0010 1.306 1.306 
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157 other 

business 

services 

1032)86(w =       2249)92(w =  179.2DW =  005.1DU =  

DL  1.384 0.0460 1.385 1.391 

DB  1.237 0.0426 1.236 1.230 

DF  1.267 0.0035 1.267 1.267 

Sectors with the largest absolute growth 

121 wholesale 

trade 

13212)86(w =    21712)92(w =  568.1DW =  144.1DU =  

DL  1.015 0.0006 1.015 1.015 

DB 1.032 0.0008 1.032 1.032 

DF  1.309 0.0007 1.309 1.309 

123 retail trade 7726)86(w =       12225)92(w =  582.1DW =  160.1DU =  

DL  0.999 0.0000 0.999 0.999 

DB 1.035 0.0000 1.035 1.035 

DF  1.320 0.0000 1.320 1.320 

146 railways, 

communication 

services, taxi 

and coach 

enterprises 

5385)86(w =       8232)92(w =  529.1DW =  049.1DU =  

DL  1.059 0.0036 1.059 1.059 
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DB 1.064 0.0036 1.064 1.065 

Df  1.294 0.0006 1.294 1.294 

171 special 

(primary) 

education (for 

handicapped 

children) 

8221)86(w =       10863)92(w =  321.1DW =  152.1DU =  

DL  0.999 0.0000 0.999 0.999 

DB 0.939 0.0000 0.939 0.939 

DF  1.223 0.0000 1.223 1.223 

162 local 

government 

6933)86(w =       9417)92(w =  358.1DW =  097.1DU =  

DL  0.973 0.0013 0.973 0.973 

DB 1.030 0.0011 1.030 1.030 

DF  1.236 0.0007 1.236 1.236 
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Appendix The four non-polar elementary decompositions (e=2,…,5) 
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